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Universal quantifiers occur frequently in proof obligations produced by program verifiers, for instance, to
axiomatize uninterpreted functions and to statically express properties of arrays. SMT-based verifiers typi-
cally reason about them via E-matching, an SMT algorithm that requires syntactic matching patterns to guide
the quantifier instantiations. Devising good matching patterns is challenging. In particular, overly restrictive
patterns may lead to spurious verification errors if the quantifiers needed for proof are not instantiated; they
may also conceal unsoundness caused by inconsistent axiomatizations. In this article, we present the first
technique that identifies and helps the users and the developers of program verifiers remedy the effects of
overly restrictive matching patterns. We designed a novel algorithm to synthesize missing triggering terms
required to complete unsatisfiability proofs via E-matching. Tool developers can use this information to refine
their matching patterns and prevent similar verification errors, or to fix a detected unsoundness.
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1 INTRODUCTION

Proof obligations frequently contain universal quantifiers, both in the specification and to encode
the semantics of the programming language. Most deductive verifiers [10, 13, 16, 22, 26, 32, 50] rely
on SMT solvers to discharge their proof obligations via E-matching [25]. This SMT algorithm re-
quires syntactic matching patterns of ground terms (called patterns in the following), to control the
instantiations of the quantifiers. For example, the pattern {f(x ,y)} in the formula ∀x : Int,y : Int ::
{f(x ,y)} (x = y) ∧ ¬f(x ,y) instructs the solver to instantiate the quantifier only when it finds
a triggering term that matches the pattern, e.g., f(7, z), where f is an uninterpreted function and z
is a free integer variable. The patterns can be written manually or inferred automatically by the
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7:2 A. Bugariu et al.

Fig. 1. Example (written in Boogie [15]) that leads to a spurious verification error. The assertion follows from
the axiom, but the axiom does not get instantiated without the triggering term len(nxt(7)).

solver or the verifier. However, devising them is challenging [33, 37]. Too permissive patterns may
lead to unnecessary instantiations that slow down verification or even cause non-termination (if
each instantiation produces a new triggering term, in a so-called matching loop [25]). Overly re-
strictive patterns may prevent the instantiations needed to complete a proof; they cause two major
problems in program verification: incompleteness and undetected unsoundness.

Incompleteness. Overly restrictive patterns may cause spurious verification errors when the
proof of valid proof obligations fails. Figure 1 illustrates this case. The integer x represents the
address of a node, and the uninterpreted functions len and nxt encode operations on linked lists.
The axiom defines len: its result is positive, the last node points to itself, and any added node
increases the length of the list by one. The assertion directly follows from the axiom, yet the proof
fails, as the proof obligation generated by the verifier for the assert statement does not contain
any triggering term that matches the pattern {len(nxt(x))} . Thus, the axiom does not get in-
stantiated. However, realistic proof obligations often contain hundreds of quantifiers [5], making
manual identification of missing triggering terms extremely difficult.

Unsoundness. Most of the universal quantifiers in proof obligations appear in axioms over un-
interpreted functions (to encode type information, heap models, datatypes, etc.). To obtain sound
results, these axioms must be consistent (i.e., satisfiable); otherwise, all the proof obligations hold
trivially. Consistency can be proved once and for all by showing the existence of a model that
satisfies all the axioms, as part of the soundness proof of the verification technique. However, this
solution is difficult to apply for those verifiers that generate axioms dynamically, depending on the
program to be verified. Proving consistency then requires verifying the algorithm that generates
the axioms for all possible inputs, and needs to consider many subtle issues [23, 34, 45].

A more practical approach is to check if the axioms generated for a given program are consistent.
However, this check also depends on triggering: the solver may fail to prove unsat if the triggering
terms needed to instantiate the contradictory axioms are missing. The unsoundness can thus re-
main undetected. For example, Dafny’s [32] sequence axiomatization from June 2008 contained an
inconsistency found only over a year later. A fragment of this axiomatization is shown in Figure 2.

The types U and V are uninterpreted. All the named functions are uninterpreted and are used to
describe operations over generic sequences (their original names have been simplified for presen-
tation purposes): Type : V → V represents the sequence’s type, while ElemType : V → V denotes
the type of the sequence’s elements. Therefore, F0 states that the elements of a sequence of t0 (e.g.,
integers) have type t0. The function typ : U → V returns the type of its argument, i.e., of the se-
quence (e.g., s4 in F4), or of its elements (e.g., v4 in F4). The elements of a sequence can also be
sequences. Empty : V→ U denotes an empty sequence of elements of a given type. Build : U × Int
× U × Int→ U creates a new sequence from the one provided as the first argument.
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Fig. 2. Fragment of an old version of Dafny’s [32] sequence axiomatization. U and V are uninterpreted types.
All the named functions are uninterpreted. To improve readability, we use mathematical notation throughout
this article instead of SMT-LIB syntax [18].

The axioms from Figure 2 express that sequences (including empty sequences and sequences
obtained through the Build operation) are well-typed (F0–F2), that the length of a type-correct
sequence must be non-negative (F3), and that Build constructs a new sequence of the required
length (F4). The intended behavior of Build is to update the element at index i4 in sequence s4 to
v4. However, since there are no constraints on the parameter l4, Build can be used with a negative
length, leading to a contradiction with F3. This unsoundness cannot be detected by checking the
satisfiability of the formula F0 ∧ . . . ∧ F4 because the axioms F0–F4 do not get instantiated.

This work. For SMT-based deductive verifiers, discharging proof obligations and revealing in-
consistencies in axiomatizations require the SMT solver to prove unsat via E-matching. (Verifi-
cation techniques based on proof assistants are out of scope.) Given an SMT formula for which
E-matching yields unknown due to insufficient quantifier instantiations, our technique generates
suitable triggering terms that allow the solver to complete the unsatisfiability proof. These terms
enable tool users and developers to understand and remedy the revealed completeness or sound-
ness issue. Since the SMT encodings of different input programs and their specifications typically
share axiomatizations or parts of the verification condition that encode the semantics of the pro-
gramming language, fixing such issues benefits the verification of many or even all future runs of
the verifier.

Fixing the incompleteness. For Figure 1, our technique finds the triggering term len(nxt(7)),
which allows one to fix the incompleteness. Tool users (who cannot change the axioms) can add the
triggering term to their program. For example, adding the lines var t: int; t := len(nxt(7))

before the assertion has no effect on the execution of the program but triggers the instantiation
of the axiom. Tool developers can devise less restrictive patterns; e.g., they can move the conjunct
len(x) > 0 to a separate axiom with the pattern {len(x)} (simply changing the axiom’s pattern
to {len(x)} would cause matching loops). Alternatively, they can use this information to adapt
the encoding to emit additional triggering terms enforcing certain instantiations [29, 33].

Fixing the unsoundness. In Figure 2, our synthesized triggering term Len(Build(
Empty(typ(v )), 0, v,−1)) (for a fresh value v) is sufficient to detect the unsoundness (see
Section 2). Tool users can use this triggering term to report bugs in the implementation of
the program verifier, while tool developers can add an antecedent to F4, which prevents the
construction of sequences with negative lengths.

Soundness modulo patterns. Figure 3 illustrates another scenario: Boogie’s [15] map axiomatiza-
tion is inconsistent by design at the SMT level [35]; since F2 states that storing a key-value pair into
a map results in a new map with a potentially different type, one can prove that two different types
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Fig. 3. Fragment of Boogie’s [15] map axiomatization, sound only modulo patterns. U and V are uninter-
preted types. All the named functions are uninterpreted.

(e.g., Boolean and Int) are equal in SMT. However, this behavior cannot be exposed from Boogie, as
the type system prevents the required instantiations. Thus, it does not affect Boogie’s soundness.

Still, it is necessary to detect such cases as they could surface while using Boogie with quantifier
instantiation strategies not based on E-matching (such as MBQI [28]) or with first-order provers
(e.g., Vampire [31]), which do not consider patterns. They could thus unsoundly classify an invalid
Boogie program that uses this map axiomatization as valid. Since the verifier proves the validity of
the verification condition by showing that its negation is unsatisfiable, if the refutation algorithm
yields unsat, the verifier concludes that the program fulfills its specification. This is the case when
checking the axioms from Figure 3 with MBQI: the formula F0 ∧ . . .∧ F3 is equivalent to false, so
any (even invalid) Boogie program whose SMT encoding contains the axioms F0–F3 is reported
as valid.

This example shows that the problems tackled in our work cannot be solved simply by switching
to alternative instantiation strategies, which ignore the patterns. First, these are not the preferred
choices of most modern verifiers [10, 13, 16, 22, 26, 32, 50], and are unlikely to outperform E-
matching. Second, these alternatives may produce unsound results for those verifiers designed for
E-matching, with axiomatizations that are sound only modulo patterns (as the one from Figure 3).

Contributions. This article makes the following technical contributions:

(1) We present the first automated technique that allows users and developers of SMT-based pro-
gram verifiers to detect completeness issues in program verifiers and soundness problems in
their axiomatizations. Moreover, our approach helps them devise better triggering strategies
for all future runs of their tool with E-matching.

(2) We developed a novel algorithm for synthesizing the triggering terms necessary to com-
plete unsatisfiability proofs using E-matching. Since quantifier instantiation is undecidable
for first-order formulas over uninterpreted functions, our algorithm might not terminate.
However, all identified triggering terms are sufficient to complete the proof; there are no
false positives.

(3) We evaluated our technique on benchmarks with known triggering problems from four pro-
gram verifiers. Our experimental results show that it successfully synthesized the missing
triggering terms in 65.6% of the cases and can significantly reduce the human effort in local-
izing and fixing the errors.

Outline. Section 2 presents background information on E-matching. Section 3 gives an overview of
our technique; the details follow in Section 4. In Section 5, we present our experimental results, in
Section 6, we describe various optimizations that allow our algorithm to scale to real-world inputs,
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and in Section 7, we explain its limitations. We discuss related work in Section 8 and conclude in
Section 9.

The current article is an extended and revised version of our paper “Identifying Overly Restric-
tive Matching Patterns in SMT-based Program Verifiers” presented at FM’21 [20]. Compared to the
conference paper, this article explains in more details the concept of “soundness modulo patterns”
(Sections 1 and 5.3), describes how E-matching proves the unsatisfiability of an input formula
(Section 2), presents five extensions of our algorithm (Section 4.3), and illustrates the (extended)
algorithm on various examples: the Boogie and the Dafny examples from Figure 1 and Figure 2, as
well as on a new VCC/Havoc [22, 47] benchmark and a list axiomatization with nested quantifiers
(Section 4.4). Moreover, the current article explains how our algorithm supports quantifier-free
formulas and more complex inputs with synonym functions as patterns, multi-patterns, and alter-
native patterns (Section 4.4). It also discusses the impact of various configurations of our technique
on its effectiveness (Section 5.1), provides a mechanism for automatically selecting benchmarks
with triggering issues for the evaluation (Section 5.2), includes a more detailed discussion about
the differences between our algorithm and MBQI and Vampire (Section 5.3), presents threats to
the validity of our experiments (Section 5.4), describes four optimizations implemented in our tool
(Section 6), and discusses additional related work (Section 8) and various research directions we
would like to explore in the future (Section 9).

2 BACKGROUND: E-MATCHING

In this section, we present the E-matching-related terminology used in this article and explain how
this quantifier-instantiation algorithm works on an example.

Patterns vs. triggering terms. Patterns are syntactic hints attached to quantifiers, which in-
struct the SMT solver when to perform an instantiation. In Figure 2, the quantified formula F3

will be instantiated only when a triggering term that matches the pattern {Len(s3)} is encountered
during the SMT run (i.e., the triggering term is present in the quantifier-free part of the input
formula or is obtained by the solver from the body of a previously-instantiated quantifier). Pat-
terns are matched modulo equalities, that is, F4, which has the pattern {Len(Build(s4, i4,v4, l4))},
will be instantiated also when the solver is provided the triggering term Len(s ) and it knows that
s = Build(s4, i4,v4, l4) holds for some s4 : U, i4 : Int,v4 : U, l4 : Int. However, our algorithm does
not generate such triggering terms, as it automatically substitutes s by the right-hand side of the
equality.

E-matching. We now illustrate how E-matching works on the example from Figure 2; in particular,
we show how our synthesized triggering term Len(Build (Empty(typ(v )), 0,v,−1))) helps the
solver to prove unsat when added to the axiomatization (v is a fresh variable of type U). To keep
the explanation concise, we omit unnecessary instantiations. First, the sub-terms Empty(typ(v ))
and Len(Build (Empty(typ(v )), 0,v,−1)) trigger the instantiation of F1 and F4, respectively. The
solver obtains the body of the quantifiers for these particular values:

B1 : typ(Empty(typ(v ))) = Type(typ(v ))

B4 : ¬(typ(Empty(typ(v ))) = Type(typ(v ))) ∨
(Len(Build(Empty(typ(v )), 0,v,−1)) = −1)

As the first disjunct of B4 evaluates to false (from B1), the solver learns that the second
disjunct must hold (i.e., the length must be −1); we abbreviate it as L = −1. The sub-terms
Build(Empty(typ(v )) and Len(Build(Empty(typ(v )), 0,v,−1)) of the synthesized triggering term
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Fig. 4. Main steps of our algorithm, represented as blue boxes, which helps the developers of SMT-based
verifiers devise better triggering strategies (and enable E-matching to prove unsat). The arrows depict data.

lead to the instantiation of F2 and F3, respectively:

B2 : type(Build(Empty(typ(v )), 0,v,−1)) = Type(typ(v ))

B3 : ¬(typ(Build(Empty(typ(v )), 0,v,−1)) =

Type(ElemType(typ(Build(Empty(typ(v )), 0,v,−1))))) ∨
(0 ≤ Len(Build(Empty(typ(v )), 0,v,−1))))

The term Type(ElemType(typ(Build(Empty(typ(v )), 0,v,−1)))) from B3 triggers F0:

B0 : ElemType(typ(Build(Empty(typ(v )), 0,v,−1)))

= ElemType(Type(ElemType(typ(Build(Empty(typ(v )), 0,v,−1)))))

By equalizing the arguments of the outer-most ElemType in B0, the solver learns that the first
disjunct of B3 is false. The second disjunct must thus hold (i.e., the length should be positive); we
abbreviate it as 0 ≤ L. Since (L = −1) ∧ (0 ≤ L) = false, the unsatisfiability proof succeeds.

3 OVERVIEW

Our goal is to synthesize missing triggering terms, i.e., concrete instantiations for (a small subset
of) the quantified variables of an unsatisfiable input formula I, which are necessary for the solver
to actually prove its unsatisfiablity. Intuitively, these triggering terms include counterexamples to
the satisfiability of I and can be obtained from a model of its negation. For example, I = ∀n : Int ::
n > 7 is unsatisfiable, and a counterexample n = 6 is a model of its negation ¬I = ∃n : Int :: n ≤ 7.

However, this idea does not apply to formulas over uninterpreted functions, which are common
in proof obligations. The negation of I = ∃f,∀n : Int :: f(n, 7), where f is an uninterpreted func-
tion, is ¬I = ∀f,∃n : Int :: ¬f(n, 7). This is a second-order constraint (it quantifies over functions)
and cannot be directly encoded in SMT. We thus take a different approach.

Let F be a second-order formula, in which universal quantifiers appear only in positive positions.
We define its approximation as

F≈ = F [∃f / ∀f], (1)

where f are uninterpreted functions. The approximation considers only one interpretation, not all

possible interpretations for each uninterpreted function.
We, therefore, construct a candidate triggering term from a model of ¬I≈ and check if it is

sufficient to prove that I is unsatisfiable (due to the approximation, a model is no longer guaranteed
to be a counterexample for the original formula).

The four main steps of our algorithm are depicted in Figure 4. The algorithm is stand-alone, i.e.,
not integrated into, nor dependent on any specific SMT solver. We illustrate it on the inconsistent
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Fig. 5. Formulas that set contradictory constraints on the uninterpreted function f. Synthesizing the trigger-
ing term dummy(f(g(7))) requires theory reasoning and syntactic unification. dummy is a fresh uninterpreted
function (see Step 4).

axioms from Figure 5 (which we assume are part of a larger axiomatization). To show that the
formula I = F0 ∧ F1 ∧ . . . is unsatisfiable, the solver requires the triggering term f(g(7)). The
corresponding instantiations of F0 and F1 generate contradictory constraints: f(g(7)) � 7 and
f(g(7)) = 7. In the following, we explain how we obtain this triggering term systematically.

Step 1: Clustering. As typical proof obligations or axiomatizations contain hundreds of quanti-
fiers, exploring combinations of triggering terms for all of them does not scale. To prune the search
space, we exploit the fact that I is unsatisfiable only if there exist instantiations of some (in the
worst case all) of its quantified conjuncts F such that they produce contradictory constraints on
some uninterpreted functions. (If there is a contradiction among the quantifier-free conjuncts, the
solver will detect it directly.) We thus identify clustersC of formulas F that share function symbols
and then process each cluster separately. In Figure 5, F0 and F1 share the function symbol f, so we
build the cluster C = F0 ∧ F1.

Step 2: Syntactic unification. The formulas within clusters usually contain uninterpreted func-
tions applied to different arguments (e.g., f is applied to x0 in F0 and to g(x1) in F1). We thus
perform syntactic unification to identify sharing constraints on the quantified variables (which we
call rewritings and denote their set by R) such that instantiations that satisfy these rewritings gen-
erate formulas with common terms (on which they might set contradictory constraints). F0 and F1

share the term f(g(x1)) if we perform the rewritings R = {x0 = g(x1)}.

Step 3: Identifying candidate triggering terms. The cluster C = F0 ∧ F1 from step 1 contains
a contradiction if there exists a formula Fi in C such that: (1) Fi is unsatisfiable by itself, or (2) Fi

contradicts at least one other formula from C .
To address scenario (1), we ask an SMT solver for a model of the formulaG = ¬C≈, whereC≈ is

defined in (1). After Skolemization, G is quantifier-free, so the solver is generally able to provide
a model, if one exists. We then obtain a candidate triggering term by substituting the quantified
variables from the patterns of the formulas in C with their corresponding values from the model.
However, scenario (1) is not sufficient to expose the contradiction from Figure 5, since both F0 and
F1 are individually satisfiable. Our algorithm thus also derives stronger G formulas corresponding
to scenario (2). That is, it will next consider the case where F0 contradicts F1, whose encoding into
first-order logic is: ¬F0≈ ∧ F1 ∧

∧
R, where R is the set of rewritings identified in step 2, used to

connect the quantified variables. This formula is universally-quantified (since F1 is), so the solver
cannot prove its satisfiability and generate models. We solve this issue by requiring F0 to contradict
the instantiation of F1, which is a weaker constraint.

Let F be an arbitrary formula, with universal quantifiers only in positive positions. We define
its instantiation as

FInst = F [∃x / ∀x], (2)

where x are variables. Then G = ¬F0≈ ∧ F1Inst ∧
∧
R is equivalent to (f(x0) = 7) ∧ (f(g(x1)) =

x1)∧ (x0 = g(x1)). (To simplify the notation, here and in the following formulas, we omit existential
quantifiers.) All its models set x1 to 7. Substituting x0 by g(x1) (according to R) and x1 by 7 (its value
from the model) in the patterns of F0 and F1 yields the candidate triggering term f(g(7)).
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Fig. 6. Grammar of input formulas I. Inputs are conjunctions of formulas F , which are (typically quantified)
disjunctions of literals (L or ¬L) or nested quantified formulas. Each quantifier is equipped with a pattern P .
x denotes a (non-empty) list of variables.

Step 4: Validation. Once we have found a candidate triggering term, we add it to the original
formula I (wrapped in a fresh uninterpreted function dummy, to make it available to E-matching,
but not affect the input’s satisfiability) and check if the solver can prove unsat. If so, our algorithm
terminates successfully and reports the synthesized triggering term (after a minimization step that
removes unnecessary sub-terms); otherwise, we go back to step 3 to obtain another candidate. In
our example, the triggering term dummy(f(g(7))) is sufficient to complete the unsatisfiability proof.

4 SYNTHESIZING TRIGGERING TERMS

Next, we present our algorithm for synthesizing triggering terms required by E-matching to return
unsat: in Section 4.1, we define the input formulas and in Section 4.2, we explain the details of the
algorithm. Its extensions follow in Section 4.3. We illustrate the algorithm on additional examples
in Section 4.4.

4.1 Input Formula

To simplify our algorithm, we pre-process the inputs (i.e., the proof obligations or the axioms of
a verifier): we Skolemize existential quantifiers and transform all propositional formulas into nega-

tion normal form (NNF), where negation is applied only to literals and the only logical connectives
are conjunction and disjunction; we also apply the distributivity of disjunction over conjunction
and split conjunctions into separate formulas. These steps preserve satisfiability and the seman-
tics of patterns (Section 6 addresses scalability issues). The resulting formulas follow the grammar
from Figure 6. Literals L may include interpreted and uninterpreted functions, variables, and con-
stants. Free variables are nullary functions. Quantified variables can have interpreted or uninter-
preted types, and we ensure that their names are globally unique. We assume that each quantifier
is equipped with a pattern P (if none is provided, we run the solver to infer one). Patterns are
combinations of uninterpreted functions and must mention all quantified variables. Since there
are no existential quantifiers after Skolemization, we use the term quantifier to denote universal

quantifiers.

4.2 Algorithm

The pseudo-code of our algorithm is given in Algorithm 1. It takes as input an SMT formula I
(defined in Figure 6), which we treat in a slight abuse of notation as both a formula and a set of
conjuncts. Three other parameters allow us to customize the search strategy and are discussed
later. The algorithm yields a triggering term that enables the unsat proof, or None if no term was
found. We assume here that I contains no nested quantifiers and present those at the end of this
subsection.

The algorithm iterates over each quantified conjunct F of I (Algorithm 1, line 3) and checks if
it is individually unsatisfiable (for depth = 0). For complex proofs, this is usually not sufficient,
as I is typically inconsistent due to a combination of conjuncts (F0 ∧ F1 in Figure 5). In such cases,
the algorithm proceeds as follows:

Step 1: Clustering. It constructs clusters of formulas similar to F (Algorithm 2, line 4), based on
their Jaccard similarity index. Let Fi and Fj be two arbitrary formulas, and Si and S j their respective
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ALGORITHM 1: Our algorithm for synthesizing triggering terms that enable unsatisfiability proofs

via E-matching. We assume here that all quantified variables are globally unique and I does not con-

tain nested quantifiers. We use the notation ×Si to represent the Cartesian product of the sets Si .

checkSat yields the solver’s result on the given formula (i.e., sat, unsat, unknown, timeout, or er-

ror), a model for satisfiable formulas, and an unsat core for unsatisfiable ones (the unsat core is not

relevant for our algorithm). minimized removes redundant (sub-)terms from a triggering term. The

auxiliary procedures clustersRewritings and candidateTerm are presented in Algorithm 2 and

Algorithm 3, respectively.

Arguments: I — input formula, also treated as set of conjuncts
σ — similarity threshold for clustering
δ — maximum depth for clustering
μ — maximum number of different models

Result: The synthesized triggering term or None, if no term was found

1 Procedure synthesizeTriggeringTerm
2 foreach depth ∈ {0, . . . ,δ } do

3 foreach F ∈ I | F is ∀x :: F ′ do

4 foreach (C,R) ∈ clustersRewritings(I, F , σ, depth) do // steps 1, 2

5 Inst←− {}
6 foreach f ∈ C | f is ∀x :: D0 ∨ . . . ∨ Dn or D0 ∨ . . . ∨ Dn do

7 Inst[f ]←− {(∧0≤j<k ¬D j ) ∧ Dk | 0 ≤ k ≤ n}

8 Inst[F ]←− {¬F ′}

9 foreach H ∈×{Inst[f ] | f ∈ {F } ∪C} do //× = Cartesian product

10 G ←− ∧H ∧∧R

11 foreach m ∈ {0, . . . , μ − 1} do

12 resG, model←− checkSat(G)
13 if resG � SAT then

14 break // no models if G is not SAT

15 T ←− candidateTerm({F } ∪C , R, model) // step 3

16 resI, _←− checkSat(I ∧ T) // step 4

17 if resI = UNSAT then

18 return minimized(T) // success

19 G ←− G ∧ ¬model // avoid this model next iteration

20 return None

sets of uninterpreted function symbols (from their bodies and the patterns of the quantifiers). The
Jaccard similarity index is defined as

J (Fi , Fj ) =
|Si ∩ S j |
|Si ∪ S j |

. (3)

That is, the number of common uninterpreted functions divided by the total number. For the two
formulas from Figure 5, S0 = {f}, S1 = {f, g}, therefore J (F0, F1) = | {f} |

| {f,g} | = 0.5.
Our algorithm explores the search space by iteratively expanding clusters to include transitively-

similar formulas up to a maximum depth (parameter δ in Algorithm 1). For two formulas Fi , Fj ∈ I,
we define the similarity function as

simδ
I (Fi , Fj ,σ) =

⎧⎪⎨
⎪
⎩

J (Fi , Fj ) ≥ σ, δ = 1

∃Fk : simδ−1
I\{Fi } (Fi , Fk ,σ) and J (Fk , Fj ) ≥ σ, δ > 1

, (4)
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ALGORITHM 2: Auxiliary procedure for Algorithm 1, which identifies clusters of formulas similar

to F and their rewritings. sim is defined (4). unify is a first-order unification algorithm (not shown);

it returns a set of rewritings with restricted shape, defined in (5). qvars returns the set of quantified

variables from the formulas of a given cluster. lhs represents the left-hand of a rewriting, which is,

according to (5), a quantified variable.

Arguments: I — input formula, also treated as set of conjuncts
F — quantified conjunct of I, i.e., F ∈ I | F is ∀x :: F ′

σ — similarity threshold for clustering
depth — current depth for clustering

Result: A set of pairs, consisting of clusters and their corresponding rewritings

1 Procedure clustersRewritings
2 if depth = 0 then

3 return {(∅,∅)}
4 simFormulas←− { f | f ∈ I \ {F } and sim

depth
I (F, f, σ)} // step 1

5 rewritings←− {}
6 foreach f ∈ simFormulas do

7 rws←− unify(F , f ) // step 2

8 if rws = ∅ and ( f is ∀x :: D0 ∨ . . . ∨ Dn ) then

9 simFormulas←− simFormulas \ { f }
10 rewritings[f ]←− rws

11 return {(C,R) | C ⊆ simFormulas and (∀r ∈ R, ∃f ∈ C : r ∈ rewritings[f ])
and (∀x ∈ qvars(C): |{r | r ∈ R and x = lhs(r)}| ≤ 1)}

where σ ∈ [0, 1] is a similarity threshold used to parameterize our algorithm and J is defined in
(3).

The initial cluster (for depth = 1) includes all the conjuncts of I that are directly similar to F .
Each subsequent iteration adds the conjuncts that are directly similar to an element of the cluster
from the previous iteration, that is, transitively similar to F . This search strategy allows us to
gradually strengthen the formulasG (used to synthesize candidate terms in step 3) without overly
constraining them (an over-constrained formula is unsatisfiable, and has no models).

Step 2: Syntactic unification. Next (Algorithm 2, line 7), we identify rewritings, i.e., constraints
under which two similar quantified formulas share terms. (Section 4.4 presents the quantifier-free
case.) We obtain the rewritings by performing a simplified form of syntactic term unification, which
reduces their number to a practical size. Our rewritings are directed equalities. For two formulas
Fi and Fj and an uninterpreted function f they have the following shape:

xm = rhsn , (5)

where m = i and n = j or m = j and n = i , xm is a quantified variable of Fm , Fm contains
a term f(xm ), Fn contains a term f(rhsn ), and rhsn is a constant cn , a quantified variable xn , or
a composite function (f◦g0 ◦ · · · ◦gp ) (cn ,xn ) occurring in the formula Fn ; g0, . . . , gp are arbitrary
(interpreted or uninterpreted) functions. We thus determine the most general unifier [14] only for
those terms that have uninterpreted functions as the outer-most functions and quantified variables
as arguments. The unification algorithm is standard (except for the restricted shape), so it is not
shown explicitly.

In Figure 5, F1 is similar to F0 for any σ ≤ 0.5. We then compute the rewritings for all the
quantified variables of F0 that appear in its body as arguments to some common uninterpreted
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Fig. 7. Formulas that set contradictory constraints on the uninterpreted function f. Synthesizing the trig-
gering term dummy(f(0)) requires clusters of similar formulas with alternative rewritings.

Fig. 8. Formulas that set contradictory constraints on the uninterpreted function f. Synthesizing the trig-
gering term dummy(f(0)) requires instantiations that cover all the disjuncts.

functions (in this case, only x0). Unifying the terms f(x0) and f(g(x1)) generates the rewriting
x0 = g(x1), which has the shape defined in (5).

Since a term may appear more than once in F , or F unifies with multiple similar formulas
through the same quantified variable, we can obtain alternative rewritings for a quantified variable.
In such cases, we either duplicate or split the cluster, such that in each cluster-rewriting pair, each
quantified variable is rewritten at most once (see Algorithm 2, line 11). For example, in Figure 7,
both F1 and F2 are similar to F0 (all three formulas share the uninterpreted function symbol f).
As the unification produces alternative rewritings for x0 (x0 = x1 and x0 = x2), the procedure
clustersRewritings returns the pairs {({F1}, {x0 = x1}), ({F2}, {x0 = x2})}.

Step 3: Identifying candidate terms. From the clusters and the rewritings (identified before), we
then derive quantifier-free formulas G (Algorithm 1, line 10), and, if they are satisfiable, construct
the candidate triggering terms from their models (Algorithm 1, line 15). Each formulaG consists of:
(1) ¬F≈ (defined in (1), which is equivalent to ¬F ′, since F has the shape ∀x :: F ′ from Algorithm 1,
line 3), (2) the instantiations (defined in (2)) of all the similar formulas from the cluster, and (3) the
corresponding rewritings R. (As we assume that all the quantified variables are globally unique,
we do not perform variable renaming when computing the instantiations).

If a similar formula has multiple disjunctsDk , the SMT solver may use short-circuiting semantics
when generating the model for G. That is, if it can find a model that satisfies the first disjunct, it
may not consider the remaining ones. To obtain more diverse models, we synthesize formulas
that cover each disjunct, i.e., make sure that it evaluates to true at last once. We thus compute
multiple instantiations of each similar formula, of the form: (

∧
0≤j<k ¬D j ) ∧ Dk ,∀k : 0 ≤ k ≤ n

(see Algorithm 1, line 7). To consider all the combinations of disjuncts, we derive the formula G
from the Cartesian product of the instantiations (Algorithm 1, line 9). (For presentation purposes,
we also store ¬F ′ in the instantiations map (Algorithm 1, line 8), even if it does not represent the
instantiation of F .)

In Figure 8, F1 is similar to F0 and R = {x0 = x1}. F1 has two disjuncts and thus two possible
instantiations: Inst[F1] = {x1 ≥ 1, (x1 < 1) ∧ (f(x1) = 6)}. The formula G = (x0 > −1) ∧ (f(x0) ≤
7) ∧ (x1 ≥ 1) ∧ (x0 = x1) for the first instantiation is satisfiable, but none of the values the solver
can assign to x0 (which are all greater or equal to 1) are sufficient for the unsatisfiability proof
to succeed. The second instantiation adds additional constraints: instead of x1 ≥ 1, it requires
(x1 < 1) ∧ (f(x1) = 6). The resulting G formula has a unique solution for x0, namely 0, and the
triggering term f(0) is sufficient to prove unsat.

The procedure candidateTerm in Algorithm 3 synthesizes a candidate triggering term T from
the models of G and the rewritings R. We first collect all the patterns of the formulas from the
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ALGORITHM 3: Auxiliary procedure for Algorithm 1, which constructs a triggering term from the

given cluster, rewritings, and SMT model. patterns and qvars return the set of patterns, respectively

of quantified variables from the formulas of a given cluster. dummy is a fresh uninterpreted function

symbol, which conveys no information about the truth value of the candidate term; therefore conjoining

it to the input preserves (un)satisfiability.

Arguments: C — set of formulas in the cluster
R — set of rewritings for the cluster
model — SMT model, mapping variables to values

Result: A triggering term with no semantic information

1 Procedure candidateTerm
2 P0, . . . , Pk ←− patterns(C)
3 while R � ∅ do

4 choose and remove r ←− (x = rhs ) from R

5 P0, . . . , Pk ←− (P0, . . . , Pk )[ rhs/x ]

6 R ←− R [ rhs/x ]

7 foreach x ∈ qvars(C) do

8 P0, . . . , Pk ←− (P0, . . . , Pk )[ model(x)/x ]

9 return "dummy" + "(" + P0, . . . , Pk + ")"

clusterC (Algorithm 3, line 2), i.e., of F and of its similar conjuncts (see Algorithm 1, line 15). Then,
we apply the rewritings, in an arbitrary order (Algorithm 3, lines 3–6). That is, we substitute the
quantified variable x from the left-hand side of the rewriting with the right-hand side term rhs
and propagate this substitution to the remaining rewritings. This step allows us to include in the
synthesized triggering terms additional information, which cannot be provided by the solver. Then
(Algorithm 3, lines 7–8) we substitute the remaining variables with their constant values from the
model (i.e., constants for built-in types, and fresh, unconstrained variables for uninterpreted types).
For interpreted, user-defined types (such as a type IList for representing a List of Int, where
List and Int are both interpreted types), the solver generates constants for each type component,
or a sequence of operations required to construct them. For instance, insert(0, nil) (i.e., a sin-
gleton list containing the constant 0) is a possible model provided by the SMT solver Z3 [24] for
a variable of type IList. The resulting triggering term is wrapped in an application to a fresh,
uninterpreted function dummy to ensure that conjoining it to I does not change I’s satisfiability.

Step 4: Validation. We validate the candidate triggering term T by checking if I ∧T is unsatisfi-
able, i.e., if these particular interpretations for the uninterpreted functions generalize to all inter-
pretations (Algorithm 1, line 16). If this is the case, then we return the minimized triggering term
(Algorithm 1, line 18). The dummy function has multiple arguments, each of them corresponding to
one pattern from the cluster (Algorithm 3, line 9). This is an over-approximation of the required
triggering terms (once instantiated, the formulas may trigger each other), so minimized removes
redundant (sub-)terms. If T does not validate, we re-iterate its construction up to a bound μ and
strengthen the formulaG to obtain a different model (Algorithm 1, lines 19 and 11). The parameter
μ allows us to deal with other sources of incompleteness, as we explain next.

Let us consider the formula from Figure 9, which was part of an axiomatization with 2,495
axioms. F axiomatizes the uninterpreted function _div : Int×Int→ Int and is inconsistent, because
there exist two integers whose real division (“/”) is not an integer. The model produced by Z3 for
the formula G = ¬F ′ is x = −1,y = 0. −1/0 is defined (“/” is a total function [18]), but its result is
not specified. Thus, the solver cannot validate this model (i.e., it returns unknown). In such cases,
we ask the solver for a different model. In Figure 9, if we simply exclude previous models, we can
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Fig. 9. Inconsistent axiom from F* [49]. _div : Int× Int→ Int is an uninterpreted function. Synthesizing the
triggering term dummy(_div(1, 2)) requires diverse models.

obtain a sequence of models with different values for the numerator, but with the same value (0)
for the denominator. There are infinitely many such models; all of them fail to validate for the
same reason.

There are various heuristics one can employ to guide the solver’s search for a new model and our
algorithm can be parameterized with different ones. In our experiments, we interpret the conjunct
¬model from Algorithm 1, line 19 as (

∧
x ∈x x � model(x )) ∧ (

∧
xi ,x j ∈x, i�j, model(xi )=model(x j ) xi �

x j ). This allows us to synthesize the triggering term dummy(_div(1, 2)) and expose the error from
Figure 9.

The first component (
∧

x ∈x x � model(x )) requires all the variables to have different values than
before. This requirement may be too strong for some variables, but as we use only soft constraints,
the solver may ignore some constraints if it cannot generate a satisfying assignment. The second
part (i.e.,

∧
xi ,x j ∈x, i�j, model(xi )=model(x j ) xi � x j ) requires models from different equivalence classes,

where an equivalence class includes all the variables that are equal in the model. For example, if the
model is x0 = x ,x1 = x , where x is a value of the corresponding type, then x0 and x1 belong to the
same equivalence class. Considering equivalence classes is particularly important for variables
of uninterpreted types. The solver cannot provide actual values for them, thus it assigns fresh,
unconstrained variables. However, different fresh variables do not lead to diverse models.

Nested quantifiers. Our algorithm also supports nested quantifiers. Nested existential quantifiers
in positive positions and nested universal quantifiers in negative positions are replaced in NNF by
new, uninterpreted Skolem functions. Step 2 is also applicable to them: Skolem functions with ar-
guments (the quantified variables from the outer scope) are unified as regular uninterpreted func-
tions; they can also appear as rhs in a rewriting, but not as the left-hand side (we do not perform
higher-order unification). In such cases, the result is imprecise: the unification of f(x0, skolem())
and f(x1, 1) produces only the rewriting x0 = x1.

After pre-processing, the conjunct F and the similar formulas may still contain nested universal

quantifiers. F is always negated in G, thus it becomes, after Skolemization, quantifier-free. To en-
sure thatG is also quantifier-free (and the solver can generate a model), we extend the algorithm to
recursively instantiate similar formulas with nested quantifiers when computing the instantiations.

4.3 Extensions

Next, we describe various extensions of our algorithm that enable complex unsatisfiability proofs.

Combining multiple candidate terms. In Algorithm 1, each candidate term is validated sepa-
rately. To enable proofs that require multiple instantiations of the same formula, we developed an
extension that validates multiple triggering terms at the same time. In such cases, the algorithm
returns a set of terms that are necessary and sufficient to prove unsat. Figure 10 presents a simple
example from SMT-COMP 2019 pending benchmarks [3]. (The files in this category are not guar-
anteed to comply with the SMT-LIB standard, but our benchmarks selection algorithm described in
Section 5.2 checks this automatically.) The input I = F0∧F1 is unsatisfiable, as there does not exist
an interpretation for the uninterpreted function U that satisfies all the constraints: F1 requires U(s)
to be true; if F0 is instantiated for x0 = s, the solver learns that U(il) must be true as well; how-
ever, if x0 = il, then U(il) must be false, which is a contradiction. Exposing the inconsistency
thus requires two instantiations of F0, triggered by f(s) and f(il), respectively. We generate both
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Fig. 10. Benchmark from SMT-COMP 2019 [3]. The formulas set contradictory constraints on the uninter-
preted function U. S is an uninterpreted type, s and il are user-defined constants of type S. Synthesizing
the triggering term dummy(f(s), f(il)) requires multiple candidate terms. We use conjunctions here for sim-
plicity, but our pre-processing applies distributivity of disjunction over conjunction and splits F0 into three
different formulas with unique names for the quantified variables.

Fig. 11. Formula that sets contradictory constraints on the uninterpreted function f. The uninterpreted func-
tion g is used only as a pattern (i.e., it does not appear in the body of F , see Section 4.4). Synthesizing the
triggering term dummy(g(7)) requires unification across multiple instantiations.

Fig. 12. Fragment of Gobra’s [52] option types axiomatization. U is an uninterpreted type, none is a user-
defined constant of type U. F1 and F2 have multi-patterns (discussed in Section 4.4). Synthesizing the trigger-
ing term dummy(some(get(none))) requires type-based constraints.

triggering terms, but in separate iterations (independently, both fail to validate). However, by vali-
dating them simultaneously (i.e., conjoining both of them to I, as arguments to the fresh function
dummy), our algorithm identifies the required triggering term T = dummy(f(s), f(il)).

Unification across multiple instantiations. The clusters constructed by our algorithm are sets
(see Algorithm 2, line 11), so they contain a formula at most once, even if it is similar to multiple
other formulas from the cluster. We thus consider the rewritings for multiple instantiations of
the same formula separately, in different iterations. To handle cases that require multiple (but
boundedly many) instantiations, we extend the algorithm with a parameter Φ, which bounds the
maximum frequency of a quantified conjunct within the formulas G. That is, it allows a similar
quantified formula, as well as F itself, to be added to a cluster (now represented as a list) more than
once (after performing variable renaming, to ensure that the names of the quantified variables are
still globally unique). This results in an equisatisfiable formula for which our algorithm determines
multiple triggering terms. Inputs whose unsatisfiability proofs require an unbounded number of
instantiations typically contain a matching loop, thus, we do not consider them here. Figure 11
presents an example, which consists of a single inconsistent formula F . Our regular algorithm
from Algorithm 2 does not identify any rewritings. However, with this extension, F unifies with
itself for any Φ > 1, and one possible rewriting is x ′ = 7 (where x ′ is a fresh variable representing
the second instantiation of F ). The corresponding triggering term, T = dummy(g(7)), allows E-
matching to prove unsat. Note that the uninterpreted function g is used only as a pattern. If the
pattern would have been f(x ), any triggering term f(c ), where c is an integer constant, would have
been sufficient to complete the proof: (1) for c = 7, the contradiction would have been exposed
directly; (2) for c � 7, the term f(7), obtained from the first instantiation of F , would have triggered
its second instantiation and case (1) would have then applied.

Type-based constraints. The rewritings of the form xi = x j can be too imprecise (especially for
quantified variables of uninterpreted types), as they do not constrain the rhs . In Figure 12, the
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Fig. 13. Formulas that set contradictory constraints on the uninterpreted function f. Synthesizing the trig-
gering term dummy(f(g(2020)), f(g(2021))) requires unification for sub-terms.

solver cannot provide concrete values of the uninterpreted type U for e1 and op1, it can only assign
fresh, unconstrained variables (e.g., e and op). However, the triggering terms some(e ) and get(op),
which can be obtained from these fresh variables, are not sufficient to prove unsat; one would
additionally need the rewriting e1 = get(op1), which cannot be identified by our unification from
Section 4.2. To address such scenarios, we extend the unification to also consider as rhs a constant
or an uninterpreted function from the body of the similar formulas, which has the same type as
the quantified variable from the left-hand side. For Figure 12, it will thus generate the rewritings
R = {e0 = get(op2), e1 = get(op2),op1 = none,op2 = none} (this is one of the alternatives). These
type-based constraints allow us to synthesize the triggering term T = dummy(some(get(none))),
which exposes the unsoundness from Gobra’s [52] option types axiomatization.

Unification for sub-terms. Figure 13 shows an example which cannot be solved by any extension
discussed so far, since it requires semantic reasoning: by applying f on both sides of the equality,
one can learn from F1 that f(g(2020)) = f(g(2021)). From F0 though, f(g(2020)) = 2020 and
f(g(2021)) = 2021, which implies that 2020 = 2021, i.e., false. Our extended algorithm synthe-
sizes the required triggering term T = dummy(f(g(2020)), f(g(2021))) by applying the unification
also to sub-terms; due to our restrictive shape of the rewritings, the sub-terms can only be ap-
plications of uninterpreted functions. In Figure 13, trying to unify f(g(x0)) does not produce any
rewritings, as F1 does not contain f(g). We thus unify the sub-term g(x0) with g(2020) and g(2021)
and obtain the rewritings R = {x0 = 2020,x0 = 2021}. Together with the extension for combin-
ing multiple candidate terms described above, these rewritings provide sufficient information for
the unsat proof to succeed. This unification is syntactic, but produces the triggering terms that
would be obtained if the solver would apply some uninterpreted function present in the input on
a learned predicate (the solver performs semantic reasoning automatically, but without generating
new triggering terms).

Alternative triggering terms. Our algorithm returns the first candidate term that successfully
validates (Algorithm 1, line 18). However, it might also be useful to synthesize alternative triggering
terms for the same input, as they may correspond to different completeness or soundness issues.
Our tool provides this option and can also return all the triggering terms found within the given
timeout.

All these extensions (individually or together with other extensions) allow us to complete the
refutation proofs for particular benchmarks. Section 5 evaluates the impact of a few configurations
of our technique, which can be obtained by enabling some of the extensions or by setting certain
values for some of the additional parameters. Automatically determining which is the most suited
configuration for a particular input is left as future work.

4.4 Additional Examples

In this section, we illustrate our algorithm on various examples (including those from Figure 1 and
Figure 2, and an example with nested quantifiers). We also explain how the algorithm supports
quantifier-free formulas, synonym functions as patterns, multi-patterns, and alternative patterns.

Nested quantifiers. Our algorithm handles inputs with nested quantifiers as described in Sec-
tion 4.2. We illustrate this aspect on the formulas from Figure 14, which axiomatize operations
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Fig. 14. Formulas that set contradictory constraints on the uninterpreted function indexOf. L is an uninter-
preted type, EmptyList is a user-defined constant of type L. f1 is a Skolem function, which replaces a nested
existential quantifier. F2 contains nested universal quantifiers.

Fig. 15. Boogie example from Figure 1 encoded in our input format. F0–F2 represent the axiom, while the
quantifier-free formula F3 is the negation of the assertion (for discharging the proof obligation, the verifier
considers the axioms and the negation of the verification condition).

over lists of integers. The axioms F3 and F4 set contradictory constraints on indexOf when the
element is not contained in the list. According to Algorithm 2, one of the clusters generated for F3

is C = {F2, F0}, with the rewritings R = {l3 = l2, el3 = el2, l2 = l0}. The algorithm then computes
the instantiations for F0 and F2; as F2 contains nested quantifiers, we remove both of them and ob-
tain: Inst[F2] = {¬isEmpty(l2), isEmpty(l2) ∧ ¬has(l2, el2)}, Inst[F0] = {¬(l0 = EmptyList), l0 =
EmptyList∧isEmpty(l0)}. The model of the correspondingG formula and R allow us to synthesize
the required triggering term T = dummy(isEmpty(EmptyList), has(EmptyList, 0)).

Quantifier-free formulas. Our algorithm iterates only over quantified conjuncts but leverages
the additional information provided by quantifier-free formulas and includes them in the clusters
even if the unification cannot find a rewriting (Algorithm 2, line 8). Since quantifier-free conjuncts
can be seen as already instantiated formulas, we only have to cover all their disjuncts (Algorithm 1,
line 7).

Boogie example. Figure 15 shows the example from Figure 1 encoded in our input format. The
quantifier-free formula F3 (i.e., the negation of the verification condition) is similar to F0 (they
share the function symbol len) and unifies through the rewritings R = {x0 = 7}. We obtained
the required triggering term T = dummy(len(nxt(7))) from the model of the formula G = ¬F ′0 ∧
Inst[F3][0] ∧∧R = (len(x0) ≤ 0) ∧ (len(7) ≤ 0) ∧ (x0 = 7).

Dafny example. Our algorithm can synthesize various triggering terms that expose the unsound-
ness from Figure 2, depending on the values of its parameters. We explain here one, obtained for
σ = 0.1. For depth = 0, the algorithm checks each formula F0–F4 in isolation. As they are all indi-
vidually satisfiable, it continues with depth = 1. To avoid redundant explanations, we present only
the iteration for F3. F3 shares at least two uninterpreted function symbols with each of the other for-
mulas, so there are various alternative rewritings: s3 = Empty(t1), s3 = s4, s3 = Build(s4, i4,v4, l4),
and so on. As we consider clusters-rewritings pairs in which each quantified variable has max-
imum one rewriting, one such pair is (C = {F4},R = {s3 = Build(s4, i4,v4, l4)}). F4 has two
disjuncts, therefore its instantiations are: Inst[F4] = {typ(s4) = Type(typ(v4), ¬(type(s4) =
Type(typ(v4)) ∧ (Len(Build(s4, i4,v4, l4)) = l4)}. From these instantiations and the rewritings
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Fig. 16. Inconsistent formula from a VCC/HAVOC [22, 47] benchmark from SMT-COMP 2020 [5], which
cannot be proved unsat by MBQI. Our synthesized triggering term dummy(both_ptr(−2,−1, 0)) allows E-
matching to refute it.

R, we derive two formulas: G0 = ¬F ′3 ∧ Inst[F4][0] ∧ ∧R, with the model s3 = s , s4 = s ′, i4 = 0,
v4 = v , l4 = 1 and G1 = ¬F ′3 ∧ Inst[F4][1] ∧ ∧R, with the model s3 = s , s4 = s ′, i4 = 0, v4 = v ,
l4 = −1, where s , s ′, andv are fresh variables of type U. (We use indexes for theG formulas to refer
to them later.) We then construct the candidate triggering terms from the patterns of the formulas
F3 and F4. We replace s3 by its rhs in the rewriting, i.e., Build(s4, i4,v4, l4), and all the other quan-
tified variables by their constants from the model. The result after removing redundant terms is:
T0 = dummy(Len(Build(t , 0,v, 1))) and T1 = dummy(Len(Build(t , 0,v,−1))). Since the validation
step fails for both T0 and T1, we continue with the other (C,R) pairs, the remaining quantified
conjuncts and their similarity clusters.

If no candidate term is sufficient to prove unsat, our algorithm expands the clusters. To scale
to real-world axiomatizations, it efficiently reuses the results from the previous iterations; i.e., it
prunes the search space if a previously synthesized formula G is unsatisfiable and it strengthens
G if it is satisfiable. The pair (C = {F4},R = {s3 = Build(s4, i4,v4, l4)}) can be extended to (C =
{F4, F1},R = {s3 = Build(s4, i4,v4, l4), s4 = Empty(t1), t1 = typ(v4)}), as F1 is similar to F4 through
the rewritings R = {s4 = Empty(t1), t1 = typ(v4)}. We thus conjoin the instantiation of F1 and the
two additional rewritings to the formulasG0 andG1 from the previous iteration. This is equivalent
to recomputing the similarity cluster, the rewritings, and the combinations of instantiations. We
then obtain:G ′0 = G0 ∧ (type(Empty(t1)) = Type(t1)) ∧ (s4 = Empty(t1)) ∧ (t1 = typ(v4)), which is
unsatisfiable, andG ′1 = G1∧ (type(Empty(t1)) = Type(t1))∧ (s4 = Empty(t1))∧ (t1 = typ(v4)) with
the model: s3 = s , s4 = s ′, i4 = 0, v4 = v , l4 = −1, t1 = t , where s , s ′, v , and t are fresh variables of
types U and V, respectively. From this model and the rewritings, we construct the triggering term
T = dummy(Len(Build(Empty(typ(v )), 0,v,−1))), which is sufficient to expose the inconsistency
between F3 and F4.

VCC/HAVOC example. Figure 16 presents a fragment of an unsatisfiable benchmark generated
by VCC/HAVOC [22, 47], which cannot be refuted by neither E-matching, nor MBQI. (Section 5
provides additional experimental results and a detailed comparison between our algorithm and
alternative refutation techniques.) F , which was part of a set of 160 formulas, is inconsistent by
itself: when size = 0, it evaluates to false for any integer values a, b, such that a ≤ b. Our
algorithm synthesizes a triggering term for E-matching in ≈7 s because it initially considers each
quantified conjunct in isolation. The formula G = ¬F ′ = both_ptr(a,b, size ) ∗ size > a − b is
satisfiable and the simplest models the solver can provide (without assigning an interpretation to
the uninterpreted function both_ptr) all include size = 0 and some values for a and b, such that
a ≤ b (e.g., a = −2, b = −1).

Synonym functions as patterns. For the examples discussed so far, the functions used as pat-
terns were also present in the body of the quantifiers. However, to have better control over the
instantiations, one can also write formulas where the patterns are additional uninterpreted func-
tions, which do not appear in the bodies. Such patterns are not uncommon in proof obligations.
Figure 17 shows an example, which uses the synonym functions technique [33] to avoid matching
loops. sum and sum_syn compute the sum of the elements of a sequence, between a lower and an
upper bound. The two functions are identical (according to F0), but only sum is used as a pattern.
For equal bounds, F1 and F2 set contradictory constraints on the interpretation of sum_syn. seq.nth
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Fig. 17. Formulas with synonym functions as patterns that axiomatize sequence comprehensions and set
contradictory constraints on the uninterpreted function sum_syn. ISeq is a user-defined type, empty is a user-
defined constant of type ISeq (i.e., the empty sequence).

Fig. 18. Formulas that set contradictory constraints on the uninterpreted function f. B is an uninterpreted
type. F1 has a multi-pattern.

returns the nth element of the sequence. Using the information from the quantifier-free formula
F3, our algorithm generates the triggering term T = dummy(sum(empty, 0, 0), sum(empty, 0 + 1, 0)).
The term “0+1” comes from the rewriting l0 = l2+1. The addition is a built-in function but is used
as an argument to the uninterpreted function sum_syn, thus, it is supported by our unification.
Our algorithm is syntactic, so it does not perform arithmetic operations, it just substitutes l2 with
its value from the model. The solver then performs theory reasoning and concludes unsat.

Multi-patterns and alternative patterns. SMT solvers allow patterns to contain multiple terms,
all of which must be present to perform an instantiation. F1 in Figure 18 has such a multi-pattern

and can be instantiated only when triggering terms that match both {g(b1)} and {f(x1)} are present
in the SMT run. Our algorithm directly supports multi-patterns, as the procedure candidateTerm
instantiates all the patterns from the given cluster (see Algorithm 3, line 9). For the example from
Figure 18, our technique synthesizes the triggering termT = dummy(f(7), g(b)) from the rewritings
R = {x0 = x1} and the model of the formulaG = ¬F ′0 ∧ Inst[F1][1]∧∧R = (f(x0) = 7) ∧ (¬g(b1) ∧
f(x1) = x1) ∧ (x0 = x1). Here b is a fresh, unconstrained variable of the uninterpreted type B.

Formulas can also contain alternative patterns. For example, the quantified formula ∀x : Int ::
{f(x )} {h(x )} (f(x ) � 7) ∨ (h(x ) = 6) is instantiated only if there exists a triggering term that
matches {f(x )} or one that matches {h(x )}. Our algorithm does not differentiate between multi-
patterns and alternative patterns, thus it always synthesizes the arguments for all the patterns of
a cluster. For alternative patterns, this results in an over-approximation of the set of necessary
triggering terms. However, the minimization step (performed before returning the triggering term
that successfully validates), removes the unnecessary terms.

5 EVALUATION

Evaluating our work requires benchmarks with known triggering issues (i.e., for which E-matching
yields unknown due to incomplete quantifier instantiations). Since there is no publicly available
suite, in Section 5.1, we used manually-collected benchmarks from four verifiers [32, 38, 49, 52].
Our algorithm succeeded for 65.6%. To evaluate its applicability to other verifiers, in Section 5.2,
we used SMT-COMP [5] inputs. As they were not designed to expose triggering issues, we devel-
oped a filtering step to automatically identify the subset that falls into this category. The results
show that our algorithm is suited also for benchmarks from Spec# [16], Havoc [22], and VCC [47].
Section 5.3 illustrates that our triggering terms are simpler than the unsat proofs produced
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Table 1. Results on Verification Benchmarks with Known Triggering Issues. The columns from left to right
show: the source of the benchmarks, the number of files (#), their number of conjuncts (#F ) and of

quantifiers (#∀), the number of files for which five different configurations of our algorithm (C0–C4)
synthesized suited triggering terms, our results across all configurations, the number of unsat proofs

generated by Z3 (with MBQI [28]), CVC4 (with enumerative instantiation [43]), and Vampire [31] (in CASC
mode [48], using Z3 for ground theory reasoning). The columns marked with grey represent

E-matching-based algorithms; only those can be soundly used by verifiers whose SMT encodings have
patterns, i.e., are designed for E-matching

# #F #∀ C0 C1 C2 C3 C4 Our Z3 CVC4 Vampire

Source min-max min-max default σ = 0.1 β = 1 type σ = 0.1 ∧ sub work MBQI enum inst CASC ∧ Z3

Dafny 4 6–16 5–16 1 1 1 1 0 1 1 0 2

F* 2 18–2,388 15–2,543 1 1 1 1 2 2 1 0 2

Gobra 11 64–78 50–63 5 10 1 7 10 11 6 0 11

Viper 15 84–143 68–203 7 5 3 5 5 7 11 0 15

Total 32 21 (65.6%) 19 (59.3%) 0 (0%) 30 (93.7%)

σ = similarity threshold; β = batch size; type = type-based constraints; sub = sub-terms
C0: σ = 0.3; β = 64; ¬type; ¬sub.

by quantifier instantiation and refutation techniques, enabling one to fix the root cause of the
revealed issues.

Setup. We used Z3 (4.8.10) [24] to infer the patterns, generate the models, and validate the
candidate terms. However, our open-source tool [7] can be used with any solver that supports
E-matching and exposes the inferred patterns. We used Z3’s NNF tactic to transform the inputs
into NNF and locality-sensitive hashing to compute the clusters. We fixed Z3’s random seeds
to the following values: sat.random_seed to 488, smt.random_seed to 599, nlsat.seed to 611.
We set the (soft) timeout to 600 s and the memory limit to 6 GB per run and used a 1 s timeout
for obtaining a model and for validating a candidate term. The experiments were conducted on
a Linux server with 252 GB of RAM and 32 Intel Xeon CPUs at 3.3 GHz and can be replicated via
our Docker image [6].

5.1 Effectiveness on Verification Benchmarks with Known Triggering Issues

First, we used manually-collected benchmarks with known triggering issues from four state-of-
the-art verifiers: Dafny [32], F* [49], Gobra [52], and Viper [38]. We reconstructed 4, respectively
2 inconsistent axiomatizations from Dafny and F*, based on the changes from the repositories
and the messages from the issue trackers; we obtained 11 inconsistent axiomatizations of arrays
and option types from Gobra’s developers and collected 15 incompleteness issues from Viper’s
test suite [1], with at least one assertion needed only for triggering (we removed these assertions
from the benchmarks, as our work is expected to find the triggering terms automatically). The
Viper files contain algorithms for arrays, binomial heaps, binary search trees, and regression tests.
The input sizes (minimum–maximum number of formulas or quantifiers) are shown in Table 1,
columns #F–#∀.

Configurations. We ran our tool with five configurations, to also analyze the impact of its pa-
rameters (see Algorithm 1 and Section 4.3). The default configuration C0 has: σ = 0.3 (similarity
threshold), β = 64 (batch size, i.e., the number of candidate terms validated together), ¬type (no
type-based constraints), ¬sub (no unification for sub-terms). The other configurations differ from
C0 in the parameters shown in Table 1. All configurations use δ = 2 (maximum transitivity depth),
μ = 4 (maximum number of different models), and 600 s timeout per file.
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Table 2. Results on SMT-COMP Inputs. The columns have the structure from Table 1

# #F #∀ C0 C1 C2 C3 C4 Our Z3 CVC4 Vampire

Source min-max min-max default σ = 0.1 β = 1 type σ = 0.1 ∧ sub work MBQI enum inst CASC ∧ Z3

Spec# 33 28–2,363 25–645 16 16 14 16 15 16 16 0 29

VCC/Havoc 14 129–1,126 100–1,027 11 9 5 11 9 11 12 0 14

Simplify 1 256 129 0 0 0 0 0 0 1 0 0

BWI 13 189–384 198–456 1 1 2 1 1 2 12 0 12

Total 61 29 (47.5%) 41 (67.2%) 0 (0%) 55 (90.1%)

σ = similarity threshold; β = batch size; type = type-based constraints; sub = sub-terms
C0: σ = 0.3; β = 64; ¬type; ¬sub.

Results. Columns C0–C4 in Table 1 show the number of files solved by each configuration, Our

work summarizes those solved by at least one. Overall, we found suited triggering terms for 65.6%,
including all F* and Gobra benchmarks. An F* unsoundness exposed by all configurations in ≈60 s
is given in Figure 9. It required two developers to be manually diagnosed based on a bug report [4].
A simplified Gobra axiomatization for option types is shown in Figure 12; the entire axiomatization
(considered in Table 1) was solved only by C4 in ≈13 s. Gobra’s team spent one week to identify
some of the issues. As our triggering terms for F* and Gobra were similar to the manually-written
ones, we believe they could have reduced the human effort in localizing and fixing the errors.

Our algorithm synthesized missing triggering terms for 7 Viper files, including the array max-
imum example [2], for which E-matching could not prove that the maximal element in a strictly
increasing array of size 3 is its last element. Our triggering term loc(a,2) (loc maps arrays and
integers to heap locations) can be added by a user of the verifier to their postcondition. A developer

can fix the root cause of the incompleteness by including a generalization of the triggering term to
arbitrary array sizes: len(a) != 0 ==> x == loc(a, len(a)-1).val (val allows one to access
the value at the corresponding heap location). Both fixes result in E-matching refuting the proof
obligation in under 0.1 s. We also exposed another case where Boogie (which is used by Viper) is
sound only modulo patterns (as in Figure 3), i.e., the unsoundness is visible only at the SMT level.

As Table 1 shows, configurations with smaller σ (C1 and C4) were particularly important for
some of the F* and Gobra benchmarks. Our algorithm starts with the given σ and if it does not
find the required triggering terms, it decreases σ by 0.1 and reiterates. Thus C0 also covers the
case σ = 0.1, if the overall timeout is large enough. However, always starting with a small σ may
prevent our algorithm from synthesizing the triggering terms, since the number of rewritings it
has to explore is considerably high. The extensions for unifying sub-terms (C4) and identifying
type-based constraints (C3) were also needed for one, respectively, two input files.

5.2 Effectiveness on SMT-COMP Benchmarks

Next, we considered 61 SMT-COMP [5] benchmarks from Spec# [16], VCC [47], Havoc [22], Sim-
plify [25], and the Bit-Width-Independent (BWI) encoding [39]. These were selected automatically

using a filtering algorithm that we designed (described below) and are summarized in Table 2.

Benchmarks selection. We collected all 27,716 benchmarks from SMT-COMP 2020 (single query
track) [5], with ground truth unsat and at least one pattern (as this suggests they were designed
for E-matching). We then ran Z3 to infer the missing patterns and to transform the formulas into
NNF and removed all benchmarks for which the inference or the transformation did not succeed
within 600 s per file and 4 s per formula. We also removed the files with features not yet supported
by PySMT [27], the parsing library used in our experiments (e.g., sort signatures in datatypes
declarations), but we did extend PySMT to handle, e.g., patterns and overloaded functions. This
filtering resulted in 6,481 benchmarks. We then ran E-matching and kept only those 61 examples
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that could not be solved within 600 s due to incompleteness in instantiating quantifiers (our work
only targets this incompleteness, but the SMT-COMP suite also contains other solving challenges).

Results. The results are shown in Table 2, which follows the structure of Table 1. Our algorithm
enabled E-matching to refute 47.5% of the files, most of them from Spec# and VCC/Havoc. We
manually inspected some BWI benchmarks (for which the algorithm had worse results) and ob-
served that the validation step times out even with a much higher timeout. This shows that some
candidate terms trigger matching loops and explains why C2 (which validates them individually)
solved one more file. Extending our algorithm to avoid matching loops, by construction, is left as
future work. The other configurations did not prove to be better than C0 for these SMT-COMP
inputs.

5.3 Comparison with Unsatisfiability Proofs

As an alternative to our work, the developers of program verifiers could try to manually identify
triggering issues from refutation proofs. In this experiment, we considered three state-of-the-art
provers that rely on different solving strategies and could generate such proofs: Z3 (4.8.10, the same
version as for our tool) with MBQI [28] (a model based quantifier instantiation technique), CVC4
(1.6) [17] with enumerative instantiation [43] (an algorithm based on E-matching, used when E-
matching saturates), and the first-order theorem prover Vampire (4.4) [31], using Z3 for ground the-
ory reasoning [42] and the CASC [48] portfolio mode with competition presets. Note that the only
approach comparable with ours is enumerative instantiation; MBQI and Vampire do not consider
patterns, thus they solve a different problem. We are not aware of any other work that synthesizes
triggering terms for E-matching.

The last three columns in Tables 1 and 2 show the number of unsatisfiability proofs produced by
each of these alternatives. CVC4 failed for all examples (it cannot construct proofs for quantified
logics), Vampire refuted most of them. Our algorithm enabled E-matching to solve more inputs
than MBQI for F* and Gobra and had similar results for Dafny, Spec#, and VCC/Havoc. All our
five configurations solved two VCC/Havoc files not refuted by MBQI (Figure 16 presents one).

In terms of complexity, our triggering terms are much simpler than the proofs and directly
highlight the root cause of the issues. The term loc(a,2) generated for Viper’s array maximum
example from Section 5.1 is easier to understand than MBQI’s proof (which has 2,135 lines and
over 700 reasoning steps) and than Vampire’s proof (with 348 lines and 101 inference steps). Other
proofs have similar sizes. Therefore, determining the source of the inconsistency from such proofs
requires expert knowledge of the tool-specific proof format and significant manual effort.

Most deductive verifiers [10, 13, 16, 22, 26, 32, 50] employ E-matching for discharging their proof
obligations because E-matching is the most efficient SMT algorithm for program verification [28]
(the vast majority of the SMT-COMP benchmarks we initially collected were also directly refuted
by E-matching). It is thus important to help the developers use the algorithm of their choice and
return sound results even if they rely on patterns for soundness (as in Figure 3).

As our algorithm accepts as input an SMT formula, it can also produce triggering terms required
only at the SMT level, but which cannot be encoded into the input language of the verifier (e.g.,
Boogie), since they are rejected by the type system. However, such triggering terms can be fil-
tered out, as lifting them to the input language is mostly straightforward (we performed this step
manually in our experiments, to identify the cases of soundness modulo patterns; automating this
process is a possible future extension). However, this is not the case for refutation proofs, whose
back translation to the source language is an open research problem. To enable the developers
debug the axiomatizations or fix the incompleteness more efficiently, our tool can also generate
multiple triggering terms (as explained in Section 4.3). It can thus reveal multiple triggering issues
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for the same input formula, information which cannot be directly obtained from unsatisfiability
proofs.

5.4 Threats to Validity

We identified the following two threats to the validity of our experiments:

Non-determinism. The SMT solvers use randomized algorithms, which can cause non-determi-
nism. To mitigate this problem, we fixed all the available random seeds and used the same seeds
in all the phases of our evaluation (i.e., for inferring the patterns, pre-filtering via E-matching,
running our tool and MBQI).

Benchmarks selection. We relied on Z3’s E-matching algorithm to select examples with incom-
pleteness in instantiating quantifiers. An implementation of E-matching from another solver could
have led to different files. To avoid biases, we used Z3 in all the experiments.

6 OPTIMIZATIONS

In this section, we present various optimizations implemented in our tool, which allow the algo-
rithm to scale to real-world verification benchmarks.

Grammar. The grammar from Figure 6 allows us to simplify the presentation of the algorithm.
However, eliminating conjunctions by applying distributivity and splitting (as described in Sec-
tion 4.1) can result in an exponential increase in the number of terms and introduce redundancy,
affecting the performance. Conjunction elimination is not implemented in Z3’s NNF tactic (used
in our evaluation from Section 5), thus it is not performed automatically. We apply this transfor-
mation only at the top level, i.e., we do not recursively distribute disjunctions over conjunctions.
For this reason, the input conjuncts F supported by our tool can actually contain conjunctions,
in which case, we use an extended algorithm when computing the instantiations, to ensure that
all the resulting G formulas are still quantifier-free. The number of conjuncts and the number of
quantifiers reported in Tables 1 and 2 were computed before applying distributivity, thus they are
not artificially increased.

Rewritings. The restrictive shape of our rewritings (see (5)), ensures that their number is finite,
because if it exists, the most general unifier is unique up to variable renaming, i.e., substitutions
of the type {xi → x j ,x j → xi } [14]. (Such substitutions are rewritings of shape (5), where rhs
is also a quantified variable.) However, for most practical examples, the number of rewritings is
very large, thus our implementation identifies them lazily, in increasing order of cardinality. If
a rewriting r ∈ R leads to an unsat G formula for some instantiations, then we discard all the
subsequent G formulas that contain r and the same instantiations (they will also be unsatisfiable).
To make sure that the algorithm terminates within a given amount of time, in our experiments we
bound the number of G formulas derived for each quantified conjunct F to 100.

Instantiations. Our implementation computes lazily the Cartesian product of the instantiations
(Algorithm 1, line 9) since it can also have a high number of elements. However, many of them are
in practice unsatisfiable; our tool efficiently identifies trivial conflicts (e.g., ¬Di ∧Di ), pruning the
search space accordingly.

Candidate terms. To improve the performance of our algorithm, we keep track of all the candidate
triggering terms that failed to validate (i.e., of the models from which they were synthesized). Then,
we add constraints (similar to the conjunct ¬model from Algorithm 1, line 19) to ensure the solver
does not provide previously-seen models for the quantified variables from the same set of patterns.
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7 LIMITATIONS

In the following, we discuss the limitations of our approach, as well as possible solutions.

Applicability. Our algorithm effectively addresses a common cause of failed unsatisfiability
proofs in program verification, i.e., missing triggering terms. Other causes (e.g., incompleteness
in the solver’s decision procedures due to undecidable theories) are beyond the scope of our work.
Also, our algorithm is tailored to unsatisfiability proofs; satisfiability proofs cannot be reduced to
unsatisfiability proofs by negating the input, because the negation cannot usually be encoded in
SMT (as we have explained in Section 3).

SMT solvers. Our algorithm synthesizes triggering terms as long as the solver can find models for
our quantifier-free formulas. However, solvers are incomplete, i.e., they can return unknown and
produce only partial models, which are not guaranteed to be correct. Nonetheless, we use also par-
tial models, as the validation step (step 4 in Figure 4) ensures that they do not lead to false positives.

Patterns. Since our algorithm is based on patterns (provided or inferred), it will not succeed if
they do not permit the necessary instantiations. For example, the formula ∀x : Int,y : Int :: x = y
is unsatisfiable. However, the SMT solver cannot automatically infer a pattern from the body of
the quantifier, since equality is an interpreted function and must not occur in a pattern. Thus E-
matching (and implicitly our algorithm) cannot solve this example, unless the user provides as
pattern some uninterpreted function that mentions both x and y (e.g., f(x ,y)).

Bounds and rewritings. Synthesizing triggering terms is generally undecidable. We ensure ter-
mination by bounding the search space through various customizable parameters, thus our algo-
rithm misses results not found within these bounds. We also only unify applications of uninter-
preted functions, which are common in verification. Efficiently supporting interpreted functions
(especially equality) is very challenging for inputs with a small number of types (e.g., from Boo-
gie [15]).

Intended behavior. Our technique can detect soundness errors in axiomatizations, but it cannot
check if the given axioms correctly model the intended behavior of the uninterpreted functions. For
instance, the formula F = ∀t : V :: {Empty(t )} Len(Empty(t )) = 7 is satisfiable, as the solver can find
an interpretation for the uninterpreted functions Empty and Len (representing empty sequences
and the length of a sequence, respectively). Our algorithm is thus not applicable. Nonetheless,
F wrongly axiomatizes empty sequences, whose length should be 0, for all the possible types.
Approaches that use non-axiomatic semantics, such as VST [12] or CompCert [36], could address
this problem, which is orthogonal to our work.

Despite these limitations, our algorithm effectively identifies the triggering terms required in
practical examples, as we have experimentally shown in Section 5.

8 RELATED WORK

To the best of our knowledge, no other approach automatically produces the information needed by
the developers of program verifiers to remedy the effects of overly restrictive patterns. Quantifier
instantiation and refutation techniques (discussed next) can produce unsatisfiability proofs, but
these are much more complex than our triggering terms (as we have shown in Section 5.3).

Quantifier instantiation techniques. Model-based quantifier instantiation (MBQI) [28]
was designed for satisfiable formulas. It checks if the models obtained for the quantifier-free part
of the input satisfy the quantifiers, whereas we check if the synthesized triggering terms obtained
for some interpretation of the uninterpreted functions generalize to all interpretations. In some
cases, MBQI can also generate unsatisfiability proofs, but they require expert knowledge to be
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understood; our triggering terms are much simpler. Counterexample-guided quantifier instantia-

tion [44] is a technique for satisfiable formulas, which synthesizes computable functions from
logical specifications. It is applicable to functions whose specifications have explicit syntactic re-
strictions on the space of possible solutions, which is usually not the case for axiomatizations. Thus
the technique cannot directly solve the complementary problem of proving the soundness of the
axiomatization.

E-matching-based approaches. Rümmer [46] proposed a calculus for first-order logic modulo
linear integer arithmetic that integrates constraint-based free variable reasoning with E-matching.
Our algorithm does not require reasoning steps, so it is applicable to formulas from all the logics
supported by the SMT solver. Enumerative instantiation [43] is an approach that exhaustively enu-
merates ground terms from a set of ordered, quantifier-free terms from the input. It can be used
to refute formulas with quantifiers, but not to construct proofs (see Section 5.3). Our algorithm
derives quantifier-free formulas and synthesizes the triggering terms from their models, even if
the input does not have a quantifier-free part; we use also syntactic information (obtained from
the rewritings) to construct complex triggering terms.

Theorem provers. First-order theorem provers (e.g., Vampire [31]) also generate refutation proofs.
More recent works combine a superposition calculus with theory reasoning [42, 51], integrating
SAT/SMT solvers with theorem provers. We also use unification, but to synthesize triggering terms
required by E-matching. However, our triggering terms are much simpler than Vampire’s proofs
and can be used to improve the triggering strategies for all future runs of the verifier.

Detecting matching loops. Becker et al. [19] dynamically detect performance issues in quantified
SMT formulas that already include triggering terms, by identifying too permissive patterns that
lead to matching loops. Our work targets soundness and completeness errors and synthesizes the
triggering terms required to refute SMT inputs with overly restrictive patterns.

Testing verifiers. As formally verifying state-of-the-art program analysis tools (i.e., static analyz-
ers, program verifiers) is rarely possible in practice [11, 21], a few research efforts focus on testing
them. Ahn and Denney [9] proposed an approach that identifies inconsistencies in the quantified
axiomatizations without patterns of a verifier. The work also requires a computational model of the
axioms, which includes interpretations for all the function symbols. Thus, it cannot be applied to
axiomatizations with uninterpreted functions and types, which are very common in program ver-
ification. The technique tests each axiom in isolation, so it cannot find non-trivial inconsistencies
caused by the interaction between axioms. Our approach is fully automatic and detects complex er-
rors by identifying sharing constraints between formulas and synthesizing triggering terms from
clusters of similar formulas. Recent work by Irfan et al. [30] tests the soundness and precision of
the Dafny verifier [32] by generating annotated random programs, which, by construction, fulfill
or violate their specifications. The approach detects an error if the verifier accepts a program it
should reject or vice versa; this decision is based on an SMT solver being able to refute the cor-
responding SMT formula or to find a model for it. However, the technique does not address the
case in which the solver returns unknown. Our work provides a solution for incomplete quantifier
instantiations.

9 CONCLUSIONS

In this article, we presented the first automated technique that enables the users and the developers
of verifiers remedy the effects of overly restrictive patterns. Since discharging proof obligations and
identifying inconsistencies in axiomatizations require the SMT solver to prove the unsatisfiability
of a formula via E-matching, we developed a novel algorithm for synthesizing triggering terms
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that allow the solver to complete the proof. Our approach is effective for a diverse set of verifiers,
and can significantly reduce the human effort in localizing and fixing triggering issues. This article
focuses on the applications of our algorithm to program verification. However, our technique is
suited also for other kinds of first-order constraint-solving problems, e.g., system-level modeling
via Event-B [8] and the Isabelle/HOL [40] backend Sledgehammer [41]. (A thorough evaluation
of our tool on systems beyond program verifiers is left as future work.) To tackle such problems,
solvers generally require additional guidance (typically, in the form of syntactic patterns) to de-
cide how the space of possible quantifier instantiations can be pruned, resulting in tractable, yet
incomplete, search strategies. This article offers a systematic approach to gradually improve their
completeness. As future work, we also plan to extend the syntactic unification, to efficiently sup-
port commonly-used interpreted functions and to avoid generating triggering terms that cause
matching loops. Automatically determining the best combination of parameters (i.e., the best con-
figuration of our algorithm) for a specific input formula is another research direction we would
like to explore in the future. We also plan to investigate if our triggering terms could be used to
identify potential fixes for unsound axiomatizations or to guide the developers in devising new,
sound ones.
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