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Problem description
Benchmarks programs are required in a variety of contexts: for testing or com-
paring the performance of compilers, static analyzers, or program verifiers, as
data sets for machine learning algorithms, for evaluating program repair tech-
niques or Large Language Models (LLMs), etc. However, systematically gen-
erating programs that are simple (i.e., easy to understand) but also expressive
(i.e., include various language features) is very challenging. For example, Csmith
[8], a widely-used generator for random C programs, relies on complex static
analyses and run time checks to ensure that the programs do not have unde-
fined and unspecified behavior. Enumeration-based approaches [9] produce all
the C programs with k variables that match a small, syntactic skeleton. Tech-
niques for synthesizing Java programs either start from user-provided generators
[2] or require an Alloy [5] model of the constraints that should be satisfied by
the programs [7]. Recent works on evaluating LLMs for code generation use
manually-written benchmarks: HumanEval [1] (which includes 164 functions,
together with docstrings and test cases) or ClassEval [3] (which consists of 100
class-level Python code generation tasks and required a 500 person-hours effort).

To overcome some of these limitations, Hurmuz [4] automatically constructs
incrementally complex Java programs that throw null pointer exception. The
approach uses simple, manually written seed programs (when executed, these
always raise the exception) and then applies syntactic transformations that pre-
serve the faulty behavior for at least one set of inputs. However, extending
this technique to generate benchmarks with other properties requires expert
knowledge in designing the transformations. We believe that this process can
be automated by constructing the transformations using code refactoring.

The goal of this project is to develop a generic framework for synthesizing
diverse but increasingly complex benchmarks programs that fulfill a given set of
properties. The benchmarks will be constructed by applying (reverse) refactoring
techniques. Our framework should also provide theoretical guarantees (similar
to [9]) about the space of the generated benchmarks, with respect to a property-
based notion of equivalence between benchmarks that we will define. (Hurmuz
defines the equivalence with respect to a static analysis [4], while Zhang et. al
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[9] include in the generated benchmarks suite only those programs which are
not α-equivalent, where α is a variable renaming transformation).

Example
Let us assume that our goal is to automatically generate syntactically-correct
Java benchmarks in which all the methods have maximum two instructions.
That is, the desired set of properties is:

P = {language = Java,¬syntax_errors,#instructions/method ≤ 2} (*).
To synthesize them, we can start with methods with no parameters and

exactly one, type correct return instruction, as shown in Figure 1. We can then
increase the number of instructions by replacing the returned constant (0 in
Figure 1) with an expression that evaluates to the same value. A possible result
of this transformation is shown in Figure 2 and has the inverse effect of the
refactoring for inlining temporary variables.

Approach
We will first design a domain specific language to express properties about the
benchmarks (e.g., as those in (*)). We will then automatically synthesize the
simplest (shortest) programs that fulfills all the required properties. Note that
if they exist, these programs do not have to be unique. We can use a compiler
to check if they are syntactically correct.

Next, we will collect various code refactorings that, when applied directly
or reversed on the simplest programs, preserve each of the properties. We will
then apply these refactorings in a systematic way (potentially multiple times),
to obtain increasingly complex but non-redundant benchmarks. The notation of
redundancy is application-dependent. If the benchmarks are used, for example,
for testing the Java compiler, then the program from Figure 3 is equivalent with
the one from Figure 1, and thus it is redundant. However, if the goal of the
benchmarks is to validate an algorithm for inferring method names, then both
programs should be kept, as they represent a positive and a negative example.

As a possible extension, we could also automatically generate test cases
(input-output pairs) for each benchmark program that accepts input parameters
or reads its data, e.g., from a file or a database. Depending on the concrete type

class Benchmark {
int f oo ( ) {
return 0 ;

}
}

Figure 1: Simple Java program with one instruction per method.
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class Benchmark {
int f oo ( ) {
int tmp = 0 ;
return tmp ;

}
}

Figure 2: The program from Figure 1, transformed by introducing a temporary
variable.

class Benchmark {
int zero ( ) {
return 0 ;

}
}

Figure 3: Potentially redundant Java program with one instruction per method,
obtained from the program from Figure 1 by renaming the method.

of tests we would like to consider, we can use various fuzzing tools, as well as
state-of-the-art LLM-based approaches (such as [6]).

Prerequisites
The student is expected to have good programming skills. Prior experience with
refactoring techniques is a plus.

Opportunities
The student will have the chance to learn about state-of-the-art test case gen-
eration techniques.

Contact
Alexandra Bugariu: bugariua@mpi-sws.org
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