
Refactoring-based Benchmarks Generation

June 19, 2023

Problem description
Benchmarks programs are required in a variety of contexts: for testing com-
pilers, static analyzers, or program verifiers, as data sets for machine learning
algorithms, for evaluating program repair techniques, etc. However, systemat-
ically generating programs that are simple (i.e., easy to understand) but also
expressive (i.e., include various language features) is very challenging.

Csmith [5], a widely-used generator for random C programs, relies on com-
plex static analyses and run time checks to ensure that the programs do not
have undefined and unspecified behavior. Enumeration-based approaches [6]
produce all the C programs with k variables that match a small, syntactic skele-
ton. Techniques for synthesizing Java programs either start from user-provided
generators [1] or require an Alloy [3] model of the constraints which should be
satisfied by the programs [4].

To overcome some of these limitations, recent work [2] automatically con-
structs incrementally complex Java programs that throw null pointer exception.
The approach uses simple, manually written seed programs (when executed,
these always raise the exception) and then applies syntactic transformations
that preserve the faulty behavior for at least one set of inputs. However, ex-
tending this technique to generate benchmarks with other properties requires
expert knowledge in designing the transformations. We believe that this process
can be automated by constructing the transformations using code refactoring.

The goal of this project is to develop a generic framework for synthesizing
diverse but increasingly complex benchmarks programs that fulfill a given set of
properties. The benchmarks will be constructed by applying (reverse) refactoring
techniques. Our framework should also provide theoretical guarantees (similar
to [6]) about the space of the generated benchmarks, with respect to a property-
based notion of equivalence between benchmarks that we will define1.

1Hurmuz defines the equivalence between two benchmarks programs with respect to a
static analysis [2], while Zhang et. al [6] include in the generated benchmarks suite only those
programs which are not α-equivalent (α is a variable renaming transformation).

1

class Benchmark {
int f oo () {
return 0 ;

}
}

Figure 1: Simple Java program with one instruction per method.

Example
Let us assume that our goal is to automatically generate syntactically-correct
Java benchmarks in which all the methods have maximum two instructions.
That is, the desired set of properties is:

P = {language = Java,¬errors,#instructions/method ≤ 2} (2).
To synthesize them, we can start with methods with no parameters and

exactly one, type correct return instruction, as shown in Figure 1. We can then
increase the number of instructions by replacing the returned constant (0 in
Figure 1) with an expression that evaluates to the same value. A possible result
of this transformation is shown in Figure 2 and has the inverse effect of the
refactoring for inlining temporary variables.

Approach
We will first design a domain specific language to express properties about the
benchmarks (e.g., as those in (2)). We will then automatically synthesize the
simplest (shortest) programs that fulfills all the required properties. Note that
if they exist, these programs do not have to be unique. We can use a compiler
to check if they are syntactically correct.

Next, we will collect various code refactorings that, when applied directly
or reversed on the simplest programs, preserve each of the properties. We will
then apply these refactorings in a systematic way (potentially multiple times),
to obtain increasingly complex but non-redundant benchmarks. The notation of

class Benchmark {
int f oo () {
int tmp = 0 ;
return tmp ;

}
}

Figure 2: The program from Figure 1, transformed by introducing a temporary
variable.

2

class Benchmark {
int zero () {
return 0 ;

}
}

Figure 3: Potentially redundant Java program with one instruction per method,
obtained from the program from Figure 1 by renaming the method.

redundancy is application-dependent. If the benchmarks are used, for example,
for testing the Java compiler, then the program from Figure 3 is equivalent with
the one from Figure 1, and thus it is redundant. However, if the goal of the
benchmarks is to validate an algorithm for inferring method names, then both
programs should be kept, as they represent a positive and a negative example.

Prerequisites
The student is expected to have good programming skills. Prior experience with
refactoring techniques is a plus.

Opportunities
The student will have the chance to learn about state-of-the-art test case gen-
eration techniques.

Contact
Alexandra Bugariu: bugariua@mpi-sws.org

References
[1] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated test-

ing of refactoring engines. In Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on The Foundations of Software Engineering, ESEC-FSE ’07, pages
185–194, New York, NY, USA, 2007. Association for Computing Machinery.

[2] Madalina Hurmuz. Automatically generating Java benchmarks with known
errors. Master’s thesis, ETH Zürich, 2022.

[3] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2012.

3

[4] Gustavo Soares, Rohit Gheyi, and Tiago Massoni. Automated behavioral
testing of refactoring engines. IEEE Transactions on Software Engineering,
39(2):147–162, 2013.

[5] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and under-
standing bugs in c compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’11, pages 283–294, New York, NY, USA, 2011. Association for Computing
Machinery.

[6] Qirun Zhang, Chengnian Sun, and Zhendong Su. Skeletal program enu-
meration for rigorous compiler testing. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2017, pages 347–361, New York, NY, USA, 2017. Association for
Computing Machinery.

4

