
Validating MAX-SMT Solvers

June 19, 2023

Problem description
MAX-SMT solvers (such as νZ [1] from Z3 [4]) are used in various optimization
problems, e.g., scheduling, choosing the best strategy for a player within a game,
minimizing the manufacturing or the transport cost of a product, etc.

Given an input formula consisting of hard constraints (which have to hold)
and of weighted soft constraints (which may hold), the scope of a MAX-SMT
solver is:

1. to determine if the hard constraints hold (i.e., are satisfiable)
2. if they hold, then to also identify a subset of the soft constraints which

are satisfiable together with the hard constraints, such that the sum of the
corresponding weights is maximized. To identify them, MAX-SMT solvers rely
on complex algorithms, thus implementing them correctly is very challenging.

The goal of this project is to automatically validate the results produced by
MAX-SMT solvers, by generating input formulas that are satisfiable or unsatisfi-
able by construction; for satisfiable formulas, we will also consider as part of the
test oracle (that is, of the expected output) the maximum sum of the weights of
the satisfiable soft constraints. We focus on formulas with known ground truth,
as they allow us to identify soundness bugs. These are the most severe types of
bugs and occur when the solver provides a wrong answer (i.e., returns sat for
an unsatisfiable formula or unsat for a satisfiable one) or when it constructs an
incorrect model (i.e., when it assigns incorrect values to the free variables).

Example
Let us consider the formula from Listing 1, where a is a Boolean variable. It
consists of three soft constraints (there are no hard constraints), with the weights
4, 2, and 3, respectively. The first constraint can never hold, while the last two
are unsatisfiable together. The maximum sum of the weights of the satisfiable
constraints is 3 and can be achieved if ¬a = true, i.e., a = false. However, Z3’s
MAX-SMT solver from January 2016 unsoundly1 generated the model a = true.

1https://github.com/Z3Prover/z3/issues/425

1

Listing 1: MAX-SMT formula that exposed an unsoundness in Z3
a s s e r t −s o f t (f a l s e , weight=4)
a s s e r t −s o f t (a , weight=2)
a s s e r t −s o f t (¬a , weight=3)

Approach
We will use as a starting point the approach described in [3], which presents a
solution for generating formulas with known ground truth from the string theory.
It first constructs simple satisfiable and unsatisfiable formulas and then it creates
more complex ones by applying satisfiability-preserving transformations.

However, all these formulas include only hard constraints, so in a first step,
we will extend the approach to encode the simple formulas as hard constraints
and the transformations as soft constraints, such that the truth value remains
unchanged (following, for example, the ideas from [2] Section 3.5.3). Then, we
will explore ways of generating formulas consisting only of soft constraints, which
are either unsatisfiable or have, by construction, a unique optimal solution.
Moreover, we will further extend our technique to also generate formulas with
multiple objectives.

In our example from Listing 1, all the constraints were implicitly part of the
same objective. However, if we rewrite it as shown in Listing 2, where both a
and b are Boolean variables, the solver has to maximize two objectives: obj1,
consisting of the first two soft constraints and obj2 consisting only of the third
constraint. In this case, the maximum possible sum per objective is 2 for obj1,
when b = true, and 3 for obj2, when a = false.

Listing 2: Multi-objective MAX-SMT formula
a s s e r t −s o f t (f a l s e , weight=4, id=obj1)
a s s e r t −s o f t (b , weight=2, id=obj1)
a s s e r t −s o f t (¬a , weight=3, id=obj2)

For this second example from Listing 2, the sets of variables used in the two
objectives are disjoint ({b} in obj1 and {a} in obj2), but realistic optimization
problems include objectives with overlapping sets of variables. Therefore, we
will also address the more challenging problem of constructing formulas with
multiple objectives over shared variables that still have a known ground truth.

We will evaluate our approach on known bugs from Z3’s MAX-SMT solver.
As possible extensions, we will explore how our technique can be adapted to
support different solving strategies for multiple objectives (e.g., Pareto fronts
instead of the default, lexicographic combinations [1]).

2

Prerequisites
The student is expected to have good programming skills. Prior experience with
SMT solvers is a plus.

Opportunities
The student will have the chance to gain a deep understanding of MAX-SMT
solvers and to learn about state-of-the-art testing techniques.

Contact
Alexandra Bugariu: bugariua@mpi-sws.org

References
[1] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νZ - an optimizing

SMT solver. In TACAS, 2015.

[2] Alexandra Bugariu. Automatically Identifying Soundness and Completeness
Errors in Program Analysis Tools. PhD thesis, ETH Zürich, 2022.

[3] Alexandra Bugariu and Peter Müller. Automatically testing string solvers.
In 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE), pages 1459–1470, 2020.

[4] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Pro-
ceedings of the Theory and Practice of Software, 14th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-
Verlag.

3

