
Model Fuzzing: Testing Probabilistic Model
Checkers via Mutation-based Fuzzing

September 16, 2024

Problem description
Model checking is a widely used technique for verifying different types of software
systems, such as spacecraft controllers, airline reservation systems, E-commerce
protocols, communication systems for household appliances [1], etc. Neverthe-
less, for all these applications to provide reliable results, the model checkers
themselves have to be correct. As formally verifying a verifier is usually not fea-
sible for real-world, complex tools [3], more practical approaches rely on testing.

The goal of this project is to design a testing technique based on mutational
fuzzing to automatically identify errors in model checkers. In particular, we will
focus on probabilistic model checkers, which are used for modeling and analyzing
systems with probabilistic behaviors. Given a set of seed models (e.g., Markov
chains) together with the properties they should fulfill (e.g., the expected proba-
bility of an event), we will define various mutations to modify the models, such
that their effect on the property is known by construction.

Example
Let us consider the example from Figure 1, which illustrates a case study from
the PRISM model checker1. It models a die using a fair coin (according to Knuth
and Yao’s algorithm [5]) and can be represented as a discrete time Markov chain
(DTMC): the initial state is marked with 0, the red states represent the die’s
outcomes. The other states correspond to tossing a coin. If the result is heads
(which for a fair coin has 50% chance), then the upper branch determines the
next state, otherwise the lower branch determines it. PRISM [6] can prove the
correctness of this algorithm by showing that the probability of reaching any
red state (that is, of throwing 1, 2, ..., 6) is 1/6.

1https://www.prismmodelchecker.org/casestudies/dice.php

1



Figure 1: Modeling a die using a fair coin

Approach
We will start from an existing set of benchmarks (e.g., the PRISM benchmarks
suite [7]). They include various types of models (e.g., DTMCs, Markov decision
processes (MDPs), continuous time Markov chains (CTMCs)) and their corre-
sponding properties. Since these benchmarks are already used for testing model
checkers, we can assume that the properties are correct. We will then define
different categories of mutations that can be applied to the models, such as:

1. modifying the probabilities of some of the transitions (for DTMCs) or
their rates (for CTMCs)

2. modifying the guards2 for some of the transitions

3. inserting new transitions (and their corresponding probabilities/rates)

4. removing some of the transitions

and we will determine their effect on the checked property. We will also inves-
tigate how the mutations we defined can be composed.

In Figure 1, if we modify the probability of the transition 2 → 5 to 0.25 (and
of the transition 2 → 6 to 0.75, such that the sum of the probabilities remains
1), then the likelihood of obtaining a 4 or a 5 should decrease, and the likelihood
of obtaining a 6 should increase. The exact values of the updated probabilities
may be hard to determine automatically, for arbitrary modifications but our
algorithm should be able to identify that the faces 1, 2, and 3 are not affected
by the modification (their probabilities remain unchanged).

To evaluate our approach, we will use the modified benchmarks for testing
state-of-the-art probabilistic model checkers, such as PRISM and Storm [4]. If
their source code is publicly available, we will also measure the impact of our
mutations on the coverage.

2The guards are predicates expressing when a transition can take place. If not explicitly
written, they are equivalent to true (as in Figure 1).

2



As possible extensions, we could define a transformation that converts a
given model into a different representation. Storm, for examples, support vari-
ous input formats3 (PRISM, JANI, explicit transition system, etc.). The con-
version between representations should not affect the result of the model checker
under test. Moreover, we could also fuzz the space of available options, as pro-
posed for SMT solvers in [8].

Related Work
The problem of validating different types of program analysis tools (such as
compilers, static analyzers, symbolic execution engines, SMT solvers) has re-
ceived a lot of attention from the research community (see [2] for an overview).
However, testing probabilistic model checkers is an area much less explored. To
the best of our knowledge, the only work that targets model checkers (but not
probabilistic ones) is [9]: the approach starts from deterministic C programs
and leverages their concrete executions to automatically synthesize reachability
properties. Our proposed technique is more generic, supports various types of
models (CTMCs, DTMCs, MDPs, etc.) and arbitrary probabilistic computation
tree logic (PCTL) properties.

Prerequisites
The student is expected to have good programming skills and basic knowledge
of probability. Prior experience with model checkers is a plus.

Opportunities
The student will have the chance to gain a deep understanding of probabilistic
model checkers and to learn about state-of-the-art fuzzing techniques.

Contact
Alexandra Bugariu: bugariua@mpi-sws.org

3https://www.stormchecker.org/documentation/background/languages.html

3



References
[1] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT

Press, 2008.

[2] Alexandra Bugariu. Automatically Identifying Soundness and Completeness
Errors in Program Analysis Tools. PhD thesis, ETH Zürich, 2022.

[3] Cristian Cadar and Alastair Donaldson. Analysing the program analyser.
ACM, 2016.

[4] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann,
and Matthias Volk. The probabilistic model checker storm. Int. J. Softw.
Tools Technol. Transf., 24(4):589–610, aug 2022.

[5] Donald Knuth and Andrew Yao. Algorithms and Complexity: New Direc-
tions and Recent Results, chapter The complexity of nonuniform random
number generation. Academic Press, 1976.

[6] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of probabilistic real-time systems. In G. Gopalakrishnan and
S. Qadeer, editors, Proc. 23rd International Conference on Computer Aided
Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

[7] Marta Kwiatkowska, Gethin Norman, and David Parker. The PRISM bench-
mark suite. In Proc. 9th International Conference on Quantitative Evalua-
tion of SysTems (QEST’12), pages 203–204. IEEE CS Press, 2012.

[8] Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai Shi, Rongxin Wu, and
Charles Zhang. Fuzzing smt solvers via two-dimensional input space explo-
ration. In Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2021, pages 322–335, New York,
NY, USA, 2021. Association for Computing Machinery.

[9] Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and
Zhendong Su. Finding and understanding bugs in software model checkers.
In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering, ESEC/FSE 2019, pages 763–773, New York, NY, USA, 2019. As-
sociation for Computing Machinery.

4


